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ABSTRACT 

This paper introduces a new family of lifetime distributions, using the ascendant order statistics.                                         

The proposed distribution is called the exponential-generalized truncated Poisson (EGTP) distribution. Our approach 

follows the same procedure as Adamidis and Loukas (1998) and generalizes the exponential Poisson distribution 

introduced by Kus (2007). We give general forms of the probability density function (pdf), the cumulative distribution                                

(cdf), the reliability and failure rate functions of any order statistics. The parameters’ estimation is attained by the 

maximum likelihood (ML) and the expectation maximization (EM) algorithms. The applied study is illustrated based on 

real datasets.  

KEYWORDS: Order Statistics; Exponential Distribution; Failure Rate; Survivor Function; Truncated Poisson 

Distribution; Lifetime Distributions; EM Algorithm 
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INTRODUCTION 

Lifetime distributions have been introduced, for modelling and analyzing real lifetime data in many areas of 

studies, such as engineering, computer science, biology, actuarial science, biomedical studies and reliability.                                          

The exponential and Weibull are the most common distributions used in lifetime and reliability analysis, in various fields 

of applied statistics. They give good insight into the nature and importance of the reliability and failure rate functions. The 

exponential distribution is often used in reliability theory, assuming constant failure rate                                              

(Balakrishnan and Basu, 1995; Barlow and Proschan, 1975). In recent years, a growing number of scholarly papers has 

been devoted to accommodate data where the underlying hazard rates present monotone shapes.                                              

Several lifetime models are proposed as extensions of the exponential distribution using a mixture of discrete and 

continuous distributions. For example, Adamidis and Loukas (1998) proposed the exponential-geometric (EG) distribution; 

with decreasing failure rate (see also, Adamidis et al., 2005 and Silva et al., 2010). In the same way,                                              

Kus (2007) introduced the exponential-Poisson (EP) distribution that is generalized by Hemmati et al. (2011), using an 

exponential-Weibull (EW) distribution. Tahmasbi and Rezaei (2008, 2008a), proposed the exponential-logarithmic (EL) 

distribution. Chahkandi and Ganjali (2009), proposed the exponential power-series (EPS) distributions. This family 

includes the compound exponential-binomial (EB) distribution. Barreto-Souza and Cribari-Neto (2009), generalized the EP 

distribution by exponentiation. Barreto-Souza et al. (2011), extended the EG distribution, using the mixture of the 

geometric and Weibull distributions. Morais and Barreto-Souza (2011), introduced the Weibull power-series (WPS) 
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distributions that extend the EPS distribution. The geometric-exponential Poisson (GEP) distribution is proposed by 

Nadarajah et al (2013). Barreto-Souzaa and Bakouch (2013) introduced another distribution, by mixing the exponential 

with the Poisson–Lindley distribution. All these lifetime distributions previously carried out are with decreasing or 

increasing failure rates  (DFR or IFR). Indeed, these distributions come from the idea of modelling a system reliability 

based on the reliability of its components (parallel, series and combined system). Thus, previous papers are focused only 

on the study of the minimum or the maximum lifetime, i.e. the first or the last order statistics.  

In this paper, we generalize these distributions modelling the time of the first (or the last) failure, to a distribution 

more appropriate for modelling any 𝑘𝑡ℎ order statistic (second, third, or any 𝑘𝑡ℎ lifetime). For example, one may let 

𝑋(1) <  𝑋(2) < ⋯  < 𝑋(Z) be the order statistics of  𝑍 independent observations, of time-periods 𝑇 = (𝑇1, 𝑇2 , … , 𝑇𝑧), 

previous studies may be focused on the minimum, 𝑋(1) = min {𝑇𝑖}𝑖=1
𝑍 , or the maximum, 𝑋(𝑍) = min {𝑇𝑖}𝑖=1

𝑍 , lifetime.                      

We may be interested in the 𝑘𝑡ℎ duration and then determine the probability density function (pdf) for 𝑘𝑡ℎ order statistic. 

The random number 𝑍 may be modeled, using the Poisson distribution. The lifetime is an exponentially distributed random 

variable. One may also determine the distribution of the 𝑘𝑡ℎ smallest value of failure time. Then, the 𝑘𝑡ℎ order statistic is 

the lifetime of a (𝑛 − 𝑘 + 1) -out-of-n system. We propose a new family of lifetime distributions by mixing the 

exponential and the generalized truncated Poisson distributions, called the exponential-generalized truncated Poisson 

(EGTP) distribution. We show that the minimum lifetime (Kus, 2007) is a special case of our EGTP distribution. 

The paper is organized as follows: Section 2 presents the proposed EGTP distribution and the pdf, for some 

special cases. The moment-generating function (mgf) and the rth moment are presented in section 3.                                               

The reliability and failure rate functions are discussed in section 4. Random number generation is shown in section 5.                           

The parameters’ estimation are discussed in section 6 and the estimates of the parameters are obtained by the maximum 

likelihood (ML) and the expectation maximization (EM) algorithms. Finally, the application study is illustrated in the last 

section. 

The Proposed Distribution 

Let 𝑇 = (𝑇1, 𝑇2 , … , 𝑇𝑧) be iid exponential random variables with the pdf 𝑓(𝑡) = 𝜃𝑒−𝜃𝑡, for 𝑡 ≥ 0 and 𝜃 > 0. 𝑍 is 

the random number of unit in a system, that follows the truncated Poisson distribution, with a probability function                     

𝑃𝑙(𝑍 = 𝑧) defined in equation (1): 

.𝑃𝑙(𝑍 = 𝑧) =
𝑒−𝜆𝜆𝑧

Γ(𝑧+1)[1−∑ 𝑃(𝑍=𝑖)𝑙
𝑖=0 ]

 ;  𝑧 = 𝑙 + 1, 𝑙 + 2, …                                                                                           (1) 

where 𝜆 > 0, Γ(𝑧 + 1) = 𝑧! and 𝑃(𝑍 = 𝑖) is a Poisson distribution with pdf: 

.𝑃(𝑍 = 𝑖) =
𝑒−𝜆𝜆𝑖

Γ(𝑖+1)
 ;  𝜆 > 0 𝑎𝑛𝑑 𝑖 = 0, 1, 2, …. 

Let 𝑋(𝑘) be the 𝑘𝑡ℎ-smallest value of lifetime (the 𝑘𝑡ℎ order statistic). Then, its pdf is given by                                      

(David, 1981, p. 9; Balakrishnan and Cohen, 1991, p. 12): 

( 1) 1( 1)
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The joint probability density is derived from equations (1) and (2) as: 

( 1) 1
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 
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                                            (3)                                                                    

where, 𝑋 and 𝑍 are the lifetime of a system and the last order statistic, respectively. Equation (3) is derived for the 

ascending order 𝑋(1) <  𝑋(2) <  …  < 𝑋(Z). This joint probability density function is determined by compounding a 

truncated at 𝑙 = 𝑘 − 1 Poisson distribution and the density of the 𝑘𝑡ℎ order statistic 𝑓𝑘(𝑥|𝑧, 𝜃) for (𝑘 = 1,2, … , 𝑧).                      

The use of the truncated at 𝑘 − 1 Poisson distribution is motivated by mathematical interest because we are interested in 

the 𝑘𝑡ℎ order statistic. There is a left-truncation scheme, where only (𝑧 − 𝑘 + 1) individuals (or units) who survive a 

sufficient time are included, i.e. we observe only individuals or units with 𝑋(k) exceeds the time of the event that truncates 

individuals. In comparison with the formulation of Kus (2007) we consider the 𝑘𝑡ℎ-smallest value of lifetime instead of the 

minimum lifetime 𝑋(1) = min {𝑇𝑖}𝑖=1
𝑍 . Thus, our proposed new family of lifetime distributions, named the exponential-

generalized truncated Poisson (EGTP) distribution, is the marginal density distribution of 𝑥 given by: 
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                                                                        (4)                                                                                

Our distribution is more appropriate for modelling any 𝑘𝑡ℎ order statistic (2𝑛𝑑, 3𝑟𝑑  or any 𝑘𝑡ℎ lifetime). We show 

later that the minimum lifetime (Kus, 2007) is a special case the EGTP distribution. 

Since, 
1

0

( ) 1 ( ) ( , )
k

i

k P Z i IG k




 
    

 
  

where IG is the incomplete Gamma function defined by: 

1

0
( , )

u
s tIG u s t e dt  

 

Then, the final form of the pdf of 𝑥 is given by: 

(1 ) 1(1 )
( , , ) ; 1,2,...,

( , )

xk e x x ke e
g x k k z

IG k

  
 



    
                                                                         (5)         

where, 0  is the “shape” parameter and 0  is the “scale” parameter. Also, the cumulative distribution 

function of 𝑥 corresponding to the pdf in equation (5) is given by: 

[ ( ), ]
( , , ) ; 1,2,...,

( , )

IG y x k
G x k k z

IG k
 


                                                                                                   (6)                                                                                                      

where ( ) (1 )xy x e     
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In table (1), we present the pdf in equation (5) for some special cases at the first, second and third order statistics. 

Table (1) shows that the particular case of the EGTP function, for 𝑘 = 1, is the lifetime EP distribution due to Kus (2007). 

The pdf decreases strictly in 𝑥 and tends to zero as 𝑥 → ∞. Note that, for 𝑘 = 1 the EGTP distribution is strictly decreasing 

with a modal value equals to 𝜆𝜃(1 − 𝑒−𝜆)−1 given at 𝑥 = 0. As 𝜆 → 0 and 𝑘 = 1, the EGTP distribution tends to an 

exponential with parameter 𝜃. 

Table (1): The Pdf for Some Special Cases 

Order Statistics 𝐤 pdf 

First 𝑘 = 1 
(1 )

1

xe xe

e

 
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  

  
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2 (1 ) (1 )

1 ( 1)
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e
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

   

Third 𝑘 = 3 

3 (1 ) 2(1 )

2 (2 3)
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e
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
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
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Moment Generating Function and 𝒓𝒕𝒉Moment 

Suppose 𝑥 has the pdf in equation (5), then moment generating function (mgf) is given by: 

1
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and hence the 𝑟𝑡ℎ the moment is given by: 

11
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Reliability and Failure Rate Functions 

The reliability function 𝑆(𝑥)  =  𝑃𝑟{𝑋 ≥  𝑥}  =  1 −  𝐺(𝑥)  =  ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑥
 is given by: 

[ ( ), ]
( , , ) 1 ; 1,2,...,

( , )

IG y x k
S x k k z

IG k
 


                                                                                      (7)                                                                                                     

In the literature on reliability theory, one may see Barlow and Proschan (1975, 1981) and Basu (1988). The failure 

rate function ℎ(𝑥) is the “the rate of event occurrence per unit of time”. We define a failure rate function as in the Barlow 

and Proschan (1965) by ( ) ( ) / ( )h x g x S x :  

(1 ) 1(1 )
( , , ) ; 1,2,...,

( , ) [ ( ), ]

xk e x x ke e
h x k k z

IG k IG y x k

  
 



    
 


                                                                         (8)                                                                                         

The hazard function is analytically related to the time-failure probability distribution. It leads to the examination 

of increasing (IFR) or decreasing failure rate (DFR) properties of life-length distributions. 𝐺 is an IFR distribution,                       

if ℎ(𝑥) increases for all 𝑋 such that 𝐺(𝑋) <  1.  
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In table (2) we present, the reliability function in equation (7) and the failure rate function in equation (8) for some 

special cases at the first, second and third order statistics. Note that we have 2 cases: 𝑘 = 1 and k ≠ 1. If 𝑘 = 1,                    

the hazard rate function is decreasing following kus (2007). In fact, if 𝑥 → 0 then ℎ(𝑥\𝜆, 𝜃, 𝑘) = 𝜃𝜆(1 − 𝑒−𝜆) > 0 and if 

𝑥 → ∞ then ℎ(𝑥\𝜆, 𝜃, 𝑘) → 0. 

If k ≠ 1, there is an increasing hazard rate. Indeed, if 𝑥 → 0 then ℎ(𝑥\𝜆, 𝜃, 𝑘) → 0.                                                      

If 𝑥 → ∞ then ℎ(𝑥\𝜆, 𝜃, 𝑘) > 0.  

Table 2: The Reliability and Failure Rate Functions for Some Special Cases 
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Random Number Generation 

The cdf of 𝑋 in equation (6), 𝐺(𝑥\𝜆, 𝜃, 𝑘), is a right-truncated Gamma. We can generate the random variable 𝑋 

using the following steps: 

 Generate a random variable 𝑈 defined on the interval [0, 𝜆] from the truncated Gamma distribution, following the 

algorithm proposed by Philippe (1997).  

 Solve the nonlinear equation in 𝑦: 

.𝑈 =
𝐼𝐺(𝑦,𝑘)

𝐼𝐺(𝜆,𝑘)
 

 Calculate the values of 𝑋 as: 

.𝑋 = −
1

𝜃
𝑙𝑛 (1 −

𝑦

𝜆
) 

For the case of the first order statistics, 𝑘 = 1, we can generate 𝑋 directly as the following: 

.𝑋 = −
1

𝜃
𝑙𝑛 (

1

𝜆
𝑙𝑛[(1 − 𝑈)𝑒𝜆 + 𝑈]) 

where, 𝑈 is a random variable with standard Uniform distribution. 
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Estimation 

In this section, we will determine the estimates of the two-parameters 𝜆 and 𝜃 for our EGTP new family of 

distributions. Let (𝑋1, 𝑋2, … , 𝑋𝑛) be a random sample with observed values (𝑥1, 𝑥2, … , 𝑥𝑛) from the EGTP distribution with 

pdf in equation (5). The log–likelihood function given the observed values, 𝑥𝑜𝑏𝑠 = (𝑥1, … , 𝑥𝑛), is: 

1 1
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The associated gradients are: 
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The estimated EGTP parameters 𝜆̂ and θ ̂ can be found using the EM algorithm that handles the incomplete data 

problem (McLachlan and Krishnan, 1997; Dempster et al., 1977). This iterative procedure consists on repeatedly replacing 

the missing values with the new estimated ones to update the parameter estimates. The standard method used for MLEs is 

the Newton–Raphson algorithm which is also required for the M-step of the EM algorithm. The use of the algorithm needs 

second derivatives of the log-likelihood for all iterations. However, when the amount of the missed values (or information) 

in the data is relatively large, the EM method converges slowly than the Newton–Raphson algorithm (Little and Rubin, 

1983). Recently, the EM algorithm has been used in several research papers such as in Adamidis et al. (2005), Karlis 

(2003), Ng et al. (2002), Adamidis (1999), Adamidis and Loukas (1998) and others.  

To start the algorithm, we should define a hypothetical distribution of complete-data with pdf in equation (3) and 

then drive the conditional mass function as: 
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Application Example 

In the example application, we fit the EGTP new distribution to a real dataset and we compare it with the EB, EL, 

EP, EG, EPL, Gamma and Weibull distributions. The data set is from Kus (2007) and is analyzed by Barreto-Souza and 

Bakouch (2013), Chahkandi and Ganjali (2009) and Tahmasbia and Rezaeib (2008) to fit lifetime distributions with 

decreasing failure rate. The dataset represents 24 observations of “time intervals (in days) between successive earthquakes 

in the last century in North Anatolia fault zone” (Table 3): 

Table 3: “Time Intervals of the Successive Earthquakes” (Kus 2007) 

1163 3258 323 159 756 409 501 616 

398 67 896 8592 2039 217 9 633 

461 1821 4863 143 182 2117 3709 979 

 

Table 4 shows the fitted parameters, calculated values of Kolmogorov–Smirnov (K-S) and their respective                     

p-values. We compare some special cases of the EGTP distribution at 5% significance level. The K-S test shows that the 

EGTP distribution is an attractive alternative to the other models and it generalizes them to any 𝑘𝑡ℎ order statistics. Indeed, 

for k=1, The EGTP estimates are very similar to those obtained from the PE model. The new lifetime model provides a 

good fit to the dataset. The calculated K-S statistic is smaller than that obtained from the PE and its associated p-value is 

larger. 

Table 4: The Goodness of Fit for Some Special Cases, For the First Dataset 

Distributions 
Estimates 

K-S value p-value 
̂  ̂  

EGTP:     

First order (𝑘 = 1) 3.61 × 10−4 2.6170 0.0950 0.9820 

Second order (𝑘 = 2) 5.56 × 10−4 4.5600 0.1480 0.6680 

Third order (𝑘 = 3) 7.31 × 10−4 6.1520 0.1830 0.3980 

Fourth order (𝑘 = 4) 8.84 × 10−4 7.6420 0.2010 0.2880 

EB 3.70 × 10−4 0.1046 0.0985 0.9738 

EL 4.14 × 10−4 0.1260 0.0885 0.9885 

EP 3.6 × 10−4 2.6377 0.0972 0.9772 

EPL 3 × 10−4 0.5312 0.0712 0.9990 

EG 3.3 × 10−4 0.7369 0.0964 0.9690 

Gamma 5 × 10−4 0.7117 0.1235 0.8328 

Weibull 8.12 × 10−4 0.7854 0.1004 0.9690 
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